MANY-BODY CURRENTS AND THE

STRANGE-QUARK CONTENT OF “He *

The Continuous Electron Beam Accelerator Facility
Theory Group Preprint Series M. J. Musolft and R. Schiavilla

Department of Physics, Old Dominion Universily
Norfolk, Virginia 23529 U.S.A.

and
Additional copies are available from the authors. CEBAF Theory Group, M5 12H2
Newport News, Virginia 23606 U.5.A.
and
The Southeastern Universities Research Association (SURA) operates T. W. Donnelly
the Continuous Electron Beam Acceleraior Facility for the United States
Department of Energy under contract DE-AC05 84 ER40150 Center for Theoretical Physics
Laboratory for Nuclear Science
and
Department of Physics
Massachusetls Institute of Technology
Cambridge, Massachuselis 02139 [/.S.A.
DISCLAIMER

This report was prepared as an accounl of work sponsored by the United States government. Neither

the United States nor the Fnited States Department of Energy, nor any of their employees, makes

4RY warranly, e¢xpress or implied, or asanmes any legal liability or Tespammnbility lor the accuracy, R .
¢ompleteness, or nscfolness of any information, Apparatus, product, ur process disclosed, or represents (:I‘:[iAF # rl I|v94— 10 }xpl'll1 f99:1

confuitmic or imply ita cndorscment, recommendation, or favoring by the United States government *This work is supported in part by funds provided by the U. S. Department of Energy
or any agency thereol. The views and opiniona of autbors e¢xpressed herein do not Deceasarily state - . . + 2 ST - .
or teflect thuse of the United States guvernment or any agenty theseo! {D.O.E.) under contracts #DE- AC05-84ER40150 and #DE-AC02-76 FR0306Y.

"National Science Foundation Young luvestigator



ABSTRACT

Meson-exchange current (MEC) contributions to the parity-violating (PV)
asymmetry for elastic scattering of polarized electrons from e are calculated
over a range of momentum transfer using Monte Carlo methods and a variational
“He ground state wavefunction. The results indicate that MEC’s generate a
negligible contribution to the asymmetry at low-|q], where a determination of
the nucleon’s mean square strangeness radius could be carried out at CEBAF.
At larger values of momentum transfer — beyond the first diffraction minimum

two-body corrections from the p-r “strangeness charge” operator enter the
asymiuetry at a potentially observable level, even in the limit of vanishing strange-
quark matrix elements of the nucleon. For purposes of constraining the nucleon’s
strangeness electric form factor, theoretical uncertainties associated with these
MEC contributions do not appear to impose serious limitations.

L. Introduction. One objective of the CEBAF physics program is to prohe
the strange-quark “content” of the nucleon with parity-violating (PV) electron
scattering. As discussed elsewhere in the literature [1-7], PV electron scattering
al low-to-intermediate energies is particutarly suited to the study of strange-
quark vector current matrix elements, {H{sy,s|H), where H is a hadron. In
the case where the target is a nucleon (|H) = Ip} or |r}), this matrix element

can parameterized by two form factors, G¥(Q?) and GE.:)(Q"’), the strangeness
electric and magnetic form factors, respectively. Extractions of {N|3s|N), the
nucleon’s strange-quark scalar density, from = — N scattering [8,9], as well as
determinations of the strange-quark axial vector matrix element, {N|5y,yss| V),
from elastic v,p/i,p scattering [10-12] and measurements of the g1 sum [13-15],
suggest that the strange-quark “sea” plays a more important role in the low-
energy properties of the nucleon than one might expect based on the success of
valence quark models. Measurements of {N!37,5|N} would provide an additional
window on the sea-quark structure of the nucleon. Model estimates of Gg) and
G%) at low-|@?] span a wide spectrum in both magnitude and sign [16-21). It is
therefore of interest to extract the strangeness form factors at a level needed to
distinguish among model calculations and their attendant physical pictures.

To this end, use of a proton target would not be sufficient. The presence
of several poorly-constrained form factors in the PV elastic 'H(¢, e) asymmetry,
as well as theoretical uncertainties associated with axial vector radiative correc-
tions, limit the precision with which G(E') and Gg:) could be determined from
the proton alone [1,2]. The use of 4 > 1 targets in conjuction with the proton
offers the possibility of imposing more stringent limits on the nucleon’s s-quark
vector current matrix elements [1,2,22] than could be obtained with a proton
target only. In this regard, the (J*,T) = (0*,0) nuclei, such as “He, constitute
an attractive case, since the ground states of such nuclei can support matrix ele-
ments of only one operator — the isoscalar Coulomb operator {1,2,22,23). In the
one-body approximation to this operator, the nuclear wavefunction dependence
of the Coulomb matrix elements effectively cancels out from the PV asymmetry
for such nuclei, leaving only a sensitivity to Standard Model couplings and single
nucleon form factors (¢.g., G(;]). Two approved CEBAF experiments rely on this
feature of A, ,(0%,0), the PV left-right asymmetry [24,25]. The proper interpre-
tation of A, (0%, 0) requires that one understand the importance of many-body
corrections to the one-body asymmetry. Meson-exchange currents (MEC’s) con-
stitute one class of such many-body effects. In previous work [26], we computed
MEC contributions to the “He mean-square “strangeness radius”, which gen-
erates the leading s-quark contribution to A, ,(*He) at low-|g]. The results of



that calculation, peformed with a simple e shell model wavefunction and phe-
nomenclogical two-body correlation function, indicale that the 4He strangeness
radius is dominated by strange-quarks inside the nucleon.

In the present work, we extend the calcutation of Ref. (26] using a *He varia-
tional wavefunction obtained from realistic interactions and computing the asym-
metry over the full range of momentum transfer germane to the future CEBAF
experimenis. Our results indicate that the ?He strangeness radius is two orders
of magnitude more sensitive Lo the nucleon’s strangeness radius than to two-body
contributions. At the higher |7] of experiment [24], the situation is more complex.
Even if the nucleon matrix element (N|5y,s|N) were to vanish, the PV asymme-
try would still receive a non-negligible contribution from non-nucleonic s-quark
matrix elements. In particular, the p — 7 strangeness transition charge operator
generates nearly a 15% contribution to the asymmetry at the kinematics of the
experiment [24}. In this case, an experiment like that of Ref. {24] would be signif-
icant in two respects. First, it would be interesting to measure a non-negligible
strange-quark matrix element in a strongly-interacting, non-strange system, re-
gardless of the dynamical origin of that matrix element. Second, the only other
observable with significant sensitivity to the p —  MEC is the B form factor of
the deuteron [27]. If, however, G and G&' are non-zero, the level of theoreti-
cal uncertainty associated with the present MEC calculation does not appear to
be large encugh to significantly weaken the possible constraints on G{E') which a
measurement of A, ,(‘He) could provide.

In the remainder of the paper we provide details of the calculations leading
to these conclusions. Section II gives our formalisin, including expressions for
the operators used. In section III, we treat the computation of the *He matrix
elements of these operators, considering first the simple case of a shell model
ground state and subsequently turning to the Variational Mente Carlo (VMC)
approach. In section IV we discuss our results, including implications for the
interpretation of A, z(*He) and studies of nucleonic strangeness. Technical details
may be found in the Appendix.

11. Formalism. The PV left-right asymmetry for scattering of polarized elec-
trons from a nuclear target depends on the interference of the electromagnetic
(EM) and PV weak neutral current (NC) amplitudes, Mg, and M7, as
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where |Mgy | >> JMLY] at low energies. The amplitude MJY is proportional to

the sum ol two terms,
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where fﬂg) is the electron’s vecior (axial vector} neutral current and J;((E) is the
nucleon or puclear matrix <lement of the hadronic vector (axial vector) NC. One
may Tewrite A, i terms of quantities which set the scale of the asymmetry and

a ratio of nuclear response functions [1,2)

O 2 W*eY
Apn = 'UQ 2 , (3)
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where (7 is the Fermi constant measured in muon-decay, « is the EM fine struc-
ture constant, and Q% = w? — g% with w and ¢ = |4] being the energy and

magnitude of three-momentum transfer to the target. The response functions
appearing in the ratio of Eq. (3) may be written as

F2=v B, + v Ry (4a)
WPV = ULW:V + UTW:-V + UT'WVT; ' (4b)

where v,, vy and v;- are leptonic kinematic factors; B, and R, are the usual
longitudinal and transverse EM response functions; and W™ and WY, are anal-
ogous PV response functions involving products of the hadronic EM and vector
NC (“AV”) or axial vector NC (“V A7) {1,2}.

In this work, we follow the approach taken in Refs. [1-7] and keep only the
three lightest quarks in the hadronic current. In this case, one has for the two
vector currents

JEM = M T =0+ 1T =0) {5a)
Ire = €7 (T = 1)+ VRO = 0) + 68 (5b)

where the J7*(T) are the isovector (T = 1} and isoscalar (T' = 0) EM currents

and the ff‘,a) are couplings determined by the Standard Model [1,2,22]. A de-
composition of J 5 analogous to that of Eq. (5b) but involving the SU(3) octet
of axial currents and 5y,7y5s may also be made [1,2,7]. Since the *He ground
stale supports no axial vector matrix clement, however, we do not consider J 5
further in this work.

in the limit that the *He ground state is an eigenstale of isospin, the “hadronic
ratio” for this target is
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Nere, V3EI=0 = ~4sin® #,, and EE,UJ = -1 at tree level in the Standard Model
[1.2,22). The form Ffactors are given by

Féola) = (040|112 (g)10* 0) (7a)
M§D(q) = / &x olgz)Yoo (S )5 (F) (7b)
= ix [ 4 Yol @ (7¢)

where r = |£] and §{)() (5{)(¢)) denotes the co-ordinate-space (momentum-
space) charge (g = 0) component of either the isoscalar EM current ((a) —
T = 0) or strange quark current ({a) — (s)). Matrix elements of the Coulomb
operator are simply related to the elastic charge form factor as

FEMNg) = (01 01p(@I0%0) = 2v/7FS(q) . (7d)

One observes from Eq. (6) that were the nuclear matrix elements of Mé;)(q)
to vanish, the asymmetry would be nominally independent of the details of the
nuclear wavefunction.! The reason is that (i) in the absence of strangeness, the
hadronic isoscalar EM and isoscalar NC currents are identical, up to the overall
electroweak coupling, /3¢7=0, (1)) isovector matrix elements vanish if the *He
ground state is assumed to be a pure T = 0 state, and (iii) a spin-0 ground state
cannot support axial vector matrix elements.

One-body operators

Expressions for the one-body charge operators may be obtained starting from
Lorentz-covariant forms of the single-nucleon vector current matrix element:
iF(Q?%)

NOOONG) =06 [F@n, + o ue) @)

where Fy and F, are the standard Dirac and Pauli form factors of the nucleon,
{7(p) and U(p’) are nucleon spinors corresponding to nucleon states IN(p)} and
[IN(p')), respectively, and Vu(Z) 1s any one of the vector currents of interest
(iroscalar EM or strangeness). Expanding the right side of Eq. (8) in powers of

p/my, transforming to co-ordinate space, and summing over all nucleons gives
for the g = 0 component

! Apart [ rom contributions from nuclear dispersion corrections; see, e.g. Refs. 1.2,22).

(a) =[1] 2 N G(;)(T) 1 (&) alal - .~
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where 7 = —~Q?/4m?, = ¢%/4m? for elastic scatiering in the Breit frame, Py =
Px + Py, and
GY = A"~ p(® (10a)
G = () 4 B (10b)

are the Sachs electric (10a) and magnetic (10b) form factors [28]. In arriving at
the expression in Eq. (9), we have used the spinor normalization of Ref. {29]. Had
we followed the convention of Ref. [30], the charge operator would have contained
an additional term A inside the square brackets given by

Be= g (1 +92) (477 [690) +762(0)] (1)

Following the convention in Refs. [1-4], we parameterize the momentum.
dependence of the one-body form factors as

Gl(r) = G2(r) (12a)
GE (1) = ppG2(7) (12b)
Go(T) = —paTG27)n(r) (12¢)
Gr(7) = unG2(7) (12d)
GAr) = p,rGUTIE (1) (12e)
G(r) = mGB(r) (121)
with
G2y =(1+ Aﬁr)“"’ (13a)
=01+ A..r)“ (13b)
& = (1+ A7)~ (13¢)
and
T



T=0 1 n
GE._M = 5 [G,;:.M + GE.M] (14a)

1

=1 l T, T
G:_M 5 [GI;:M - GE.M'

| (14b)

Numerically, one has pp, = 2.79, p,, = =191, A0 = 497, and A, = 5.6. The
rationale for adopting this parameterization is discussed more fully in Refs. [1,2)].
The parameters u, and p,, which define the strangeness magnetic moment. and
strangeness radius, respectively, as well as /\E;) which governs the next-lo-leading
@Q? behavior of G'i.'), are presently unknown. One goal of the SAMPLE experi-
ment [6] and up-coming CEBAF experiments [24,25,31]) is to place limits on these
parameters. '

The one-body contribution to the Coulomb multipole operator, obtained by
substituting the expression for the charge operator of Eq. (9) into Eq. (7b), is

“rla 1 A (Ea) )
M = 5 { gﬁ%m(m) (15)
k=1
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where we have assumed ¢o = 0 so that 9* = 4m? 7 and where L is the orbital an-
gular momenturn of the &-th nucleon. Note that in the limit that the *He ground
state consists of nucleons in S-states only, the spin-orbit operator in M[g;;)(q)m

will not contribute to Fé.':,)(q). In this case, the Coulomb matrix elements for the
1soscalar EM and strangeness charge operators are identical, apart from the single
nucleon form factors, rendering their ratio independent of nuclear structure:

Fép @M _ 6P (16)
F'Cr"(?o(q)[l] S—waves GE:O(T)

However, the presence of a significant D-wave component (the associated prob-
ability is about 16% for the variational *He wavefunction discussed below) im-
plies some level of structure-dependence in the one-body form factor ratio of
Eq. (16). For most values of momentum transfer, the magnitude of this structure
dependence is negligible (see the spin-orbit contributions in Figs. 2b and 3b).

Two-body operators

In the one boson-exchange (OBE) approximation, the leading two-body MEC
corrections to the one-body resuit of Eq. (16) are generated by the processes
in Fig. 1. The w-exchange and vector meson-exchange “pair currents” (Figs.
la,b) are familiar from previous work on MEC's [32-36], as is the pseudoscalar-
vector meson “transition current” of Iig. lc. lu each case, the isoscalar EM
and strangeness two-body currents have the same structure, apart from the form
factors appearing at the NN creation/annihilation vertex and V —  transition
vertex. The *He elastic from factors receive no contribution from processes in
which a virtual ¥ or Z° couples to an exchanged pseudoscalar or vector meson.
The reason is that matrix elements of the form {M[V,(0)]M’} must vanish in or-
der to respect G-parity invariance when |M’) and { M) are identical meson states
(apart from momenta) and when V, is either JiM(T = 0) or 57,s. Moreover,
one has no contribution from an w — 7 transition current since currents which are
strong isoscalar operators cannot induce such an isospin-changing transition. We
have not included contributions from isobar currents, since the lightest nucleon
resonance accessible with an isoscalar current is the N(1440). We assume contri-
butions from the associated current are suppressed by the large mass difference
between this state and the nucleon.

We derive two-body charge operators by computing the covariant momentum-
space Feynman amplitudes associated with the diagrams in Fig. 1, peforming
the standard non-relativistic reduction, and transforming to co-ordinate space.
We take the meson-nucleon couplings from the conventional low-energy effective
Lagrangians:

Lane = T gn(2)Pi(z) - Fow(2) (172)
Crne = ot () [ + 520, 5 e(z) (17b)
cNNw = ngN';N(l} 7" + 2’:: a#yav] wu‘bN(:) (17(‘)

and
DM = 0% + ieQuu A® + igQu 2" | (17d)

where ¥n is a nucleon field, 9, Pu, and w,, are the pion, rho-meson, and omega-
meson fields, respectively, “a” is an isospin index, g is the semi-weak coupling,
Qen and @, are the EM and weak NC charge operators, and A* and Z¥# are the
photon and Z° ficlds, respectively. We take the couplings appearing in kq. (17)



to have the values groy = 13.6, Fonn = 2.6, gupw = 146, kK, = 6.6, and
%o = ~0.12 [37]. Momentum-space matrix elerments of Lhe operators in Eq. (17)
have the same structure as the eflective Lagrangians, but with the nucleon fields
replaced by plane wave spinors, the derivatives replaced by ik* | where k# is the
momentum of the outgoing meson, and the vector boson fields replaced by the
corresponding polarization vectors, €u. For the p — 7 transition current matrix
clement one has

(F* (k)IVEN0) " (k1 ) = T secuvapkikye” (18)

g (QY)
P
where as usual “a” denotes either the EM or strange-quark current [38]. In the
case of the former, the value of the transition form factor at the photon point is
known to be g7=*(Q? = 0) = g,,, = 0.56 [39], while the Q%-dependence may be
modelled using w-pole dominance:

TrQ%) = gory (1— Q2/m2)™" . (19)

In the case where V,,(") = §7u8, one may follow a similar approach and assume
#-meson dominance, which is reasonable since the ¢ is almost pure s5:

IENQ?) = gpme (1 - Q% /m2) ™" (20)

The measured rates for ¢ — pr and ¢ — £+¢- (£ is a charged lepton) can be
used to estimate the value of this form factor at Q2 = 0 to be |9pxs] = 0.26 [40].

Before proceeding, we touch on one issue associated with the vector meson
pair current operators. These operators are derived by keeping only the negative-
energy pole of the nucleon propagator, as shown in Fig. 1. The resulting two-body
nuclear matrix element is thus distinct from the matrix element containing the
positive energy pole, which contributes via the full nuclear Green’s function in
time-ordered perturbation theory:

(fIJ l")(nlquucii)
Z [ ["j'l.' — K, + 1 +

(fIﬂNUCI")("Upl")
E,' — En + e

(21)

n

Nere, H e is the full nuclear Hamiltonian and (i, f.n) denote initial, final, and
intermediate nuclear states, respectively. Following this prescription leads one to
& two-body pair-current operator having the same form as given in Ref. [36]. It
has been argued, however, that one must include an additional retardation con-
tribution arising from the positive-energy pole in the nucleon propagator whose
residue contains a dependence on the energy transfer between the two nucleons.

10

Inclusion of this additional term results in the form for the pair-curreni. charge
operator given in Refs. [32,33]. Rather than attempting to choose belween these

two approaches, we compute l"(C"U) in two ways — once using each of these two
prescriptions — in order to determine the impact of this choice. As we note n
Section 1V, the vector-meson exchange contributions to the *He form factors are

sufficiently small in comparison with other contributions that the impact of this

choice in the value for F((;O) is insignificant,

The momentum-space charge operators for the pair currents are
AP P3P D = (200 + = ) [ S2] HO)7 5 o)
1 . . -
x{k_:%—-l_—m—gal-qag- 2+ (1 <—~2)} ,
where k; =5 —p,i=1,2, and
Pt o P D, = (2m)8(Es + B — ) [%ﬁ] G(r)Tu(1.2)  (22b)
x{m[(l +xy) (q*-:?z+5= X §- 5y x Ez)
—ig) x ¢ (P2 +ﬁ-j)] +(1 2)}
excluding the retardation correction or
0, o 5 DL, = (2m)8(Fs 4 = [%3"-:!%] T2 (22)
><{£%—+1E [((1 + 12 FO() 4+ (1 + nv)Fg”(r)) FL X §-Fg X ks
+GY(r) ((I +m )y — 161 x §- (7 +ﬁ£))] + (1 = 2)}

including the retardation term, with

-T2,

Tv(l,‘z):{ll' :’/iz (23)

11



and where “(i)” indicates either the isoscalar EM or strange-quark charge oper-
ators. We have not included the isovector parts of the charge operators. For the
transition operators, one has

ngN.qPNNgg:')(Q2)] - (24)

APy B B, P ot = 20 6(Ky + By - @) [ | TR

1
(512 + mf)(l}g + m?2

X )51 -k [(ﬁl + ) - (ko x kp)

~i(1 + k, )(Ey x E3) - (Ka x f?z_)] +(1 = 2)}

Expressions for the co-ordinate space forms of the two-body charge operators,
PE 1, Z{, T3, Z5; P, as well as for their Coulomb multipole projections, Myo(¢)[?,
are somewhat involved and may be found in the Appendix. For purposes of
discussion, it is useful to consider the leading-¢ behavior of the two-body Coulomb
operators (shown in Eqs. (A.10) of the Appendix), since their matrix elements
contribute to the *‘He EM and strangeness radii. From the low-¢ expressions
for the two-body Coulomb operators, we observe that they vanish at least as
rapidly as ¢2 for small ¢. The operators must vanish at ¢2 = 0, since the two-
body operators cannot change the overall charge (EM or strangeness) of the *He
nucleus. In the case of strangeness, the entire nuclear form factor Fc(,*.u) must
vanish at g% = 0, since the nucleus has no net strangeness. Thus, in analogy with
the single nucleon case, we define a nuclear strangeness radius as

drgy)
pa[nuc] = 2/x—€C . (25)
dr
7=0
Under this definition, p,[nuc] = Ap, in the one-body limit neglecting the spin-
orbit contribution. From the expressions in Eq. (A.10), we note that the pionic
operator (Eq. (A.10a)) contributes to F((:"u) at ((q*), since this operator is pro-
portional to qul(") and since F,(a) vanishes as ¢2 for small ¢. Consequently, the
longest-range MEC does not contribute to the nuclear strangeness radivs. For the

same reason, the retardation correction to the vector meson pair current operator
(Eq. (22c) and Ref. [33]) also does not contribute to ps[nuc], since this correction

is proportional to Tf'l(')(f). As a result, the low-g behavior of the vector meson

contribution to F(l,.'ﬁl is independent of the choice of approach discussed above.
This choice takes on relevance only at larger values of momentum-transfer, where

the terms proportional to TFI("}(T} are non-negligible.

12

ITL. Calculation of *He Matrix Elements. Although the object of this paper
13 Lo report on a calculation of FZ5° and F((;},) using state of the art wavefunctions,
we first summarize a simpler calculation of the ile strangeness radius using a
shell model ground state with harmonic oscillator wavefunctions. ‘This simpler
treatment allows for an analytical computation and serves to guide one’s intuition
when interpreting results obtained with more sophisticated metheds. The results
of the shell model calculation were reported previously [26], and we provide more
details in the Appendix of the present paper.

Shetl Model Calculation

In the simplest shell model description of “He, the ground state consists of
a single configuration: four nucleons in the lsy/2 state. Numerical results using
more realistic wavefunctions, such as the variational wavefunction described be-
low, suggest that the level of configuration mixing is at least 15% . Within the
S-state approximation, we compute the leading-¢ behavior of F((:"o) using harmonic
oscillator single-particle wavefunctions with an oscillator parameter b = 1.2 fm,
obtained from fits to the data on FZ3° {2]. Analytic expressions for the nuclear
matrix elements appear in the Appendix, and our results give

Fl ! y
Filtr—0) = oW e ["He] (26)
= T(Alp, =+ )tza[.l, + A'_)bgpxl) 1

where the terms containing A; and Aza b give the one- and two-body contlribu-
tions, respectively. The one-body terms is nuclear structure-independent, since
the leading ¢-dependence of the one-body strangeness Coulomb operator is given
by Gg’) times an operator which counts the number of nucleons (see Eq. (15)).
The two-body term Az.pu, arises from the vector meson pair currents, while the
term Azbg,x, i generated by the p-7 transition current. Numerically, in the limit
of point meson-nucleon vertices (Are — 00), we obtain A, ~ 113, Aay = —0.05,
and Ap, & —0.02 after including a phenomenological NN anti-correlation function
i the two-body matrix elements. We expect thal the values of the Aza b for finite
A should be smaller in magnitude than those quoted, which we take to give an
upper bound on the scale of two-body contributions. These results imply, then,
that p,[*He] is at least a factor of 20 more sensitive to the nucleon’s strangeness
radius than to two-body strangeness currents.

We note in passing that had we not accounted for short range NN repulsion,
the vector meson contribution would have been a factor two larger in magnitude
and the p-r term matrix element would have been a factor of ten larger. The
reason for the large suppression of the g7 term due to short-range repulsion

13



can he seen from the structure of the momentum-space p-r charge operator in
Fqg. (24). At leading-order in ¢, the Coulomb projection of this operator has the
form

- 1
q2 o L2 L2
(Ef + mZ)(k{ +m?)

] +O(q") (27)

o ) |+ ole")
(mZ—md) " & mz Bgm e

where () is an operator dependent on &,  and k1. Nuclear matrix elements of the
full operator in Eq. (27) thus depend on the difference of matrix elements of two
operators, A(my) and A(m,), whose ranges are set by m, and m,, respectively.
In the absence of short-range anti-correlations, one has 2{g.s. [|A(my )| g.8.) =
{gs.{|lA(m,)|[ g.5.). The impact of short range repulsion is to reduce the p-
meson term (g.s. [[A(m,)|] g.s.) by about a factor of two, while leaving the matrix
element of the pionic operator, whose range s much larger than the radius of the
repulsive core, relatively unchanged. Consequently, the degree of cancellation
between the two pieces is greatly enhanced, leading to the factor of ten reduction
in Azp, as compared with the less significant impact on the magnitude of the
purely vector meson matrix elements, A,,.

Vanational Monte Carlo Calculation

The *He variational wavefunction used in the present work is obtained by
minimizing a realistic Hamiltonian with the Argonne vi4 two-nucleon [41] and
Urbana-VIII three-nucleon [42] interaction models. It has the symmetrized prod-
uct form given by {42]:

e>= 1+ 37 UTM[STIO + viglies > (28)
i<j<k i<y

Here S is the symmetrizer, and |¥; > is a Jastrow wavefunction

W >= ([]rdlAltplptnin>, (29)

i<

where A is the antisymmetrizer acting on the spin-isospin states of the four
nucleons. The two-body correlation operator I7;; is taken {o be

Us= >

p=r.aq0T1.tiT

uP (r;)O0% {30)

14

:r,—-f-’,-,&',--oj,r?,--c'r'jﬁ-rj,S,-,-.S,jﬁ-ﬁ i p=ro0rittr . (31)

The three-body correlation operator U.-"’J-'f’ is simply related to the three-nucleon
interaction present in the Hamiltonian, and has a correspondingly complex op-
eralor dependence. The correlation functions Fe(r) and uP(r) as well as the
additional parameters present in Ugf T are determined variationally with the
methods discussed in detail in ref. [42).

The *He binding energy and charge radius calculated with the above wave-
function have errors of ~ 4% when compared to exact Green’s Function Monte
Carlo (GFMC) results for the same Hamiltonian [42,43] (we note that the GFMC
results reproduce the empirical values). This wavefunction also produces a charge
form factor that is in good agreement with the exact GFMC predictions and the
experimental data over a wide range of momentum transfers {42]. Because of the
relatively strong tensor component in the Argonne v14 the D-state probability
has the rather large value of 16%.

The charge and strangeness form factors are given by the expectation values

FE& = 0 /aF(9) =< ;{1 > (32)

where |¥; § > denotes the ground state wavefunction recoilling with momentum
¢, and §(%}(¢) are the r-space representations of the charge and strangeness oper-
ators listed in the appendix. The above expectation value is computed, without
any approximation, by Monte Carlo integration. The wavefunction is written as
a vector in the spin-isospin space of the A-nucleons for any given spatial configu-
ration R = (F1,...,7a). For the given R, we calculate the state vector AN >
by performing exactly the spin-isospin algebra with the methods developed in refs.
[32,44). The momentum-dependent terms in 29 are calculated numerically; for
exampie, o

1

Win (¥(R+64) - B(R-6.), (33)

Vi ¥(R) =

where &; o is a small increment in the r; , component of R. The ﬁ,—integration is
carried out with Monte Carlo techniques by sampling a large set of R configura-
tions with the Metropolis algorithin.

The two-body pion and p-meson operators have been constructed from the
Argonne vy4 following the method outlined in ref. {44]. This implies replacing
the propagators in eqs. (22a-c) by the Fourier transforms v?7 (k) and v'7 (k) of
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the isospin dependent spin-spin and tensor components of the interaction model
as

2
gINN 1 r G iT agT ]
— e —3 x = i k had

Am?, B2 3 m? Va(k) = 20" (k) — o7 (k) (34a)

2 2
gpNN(l + KP) 1 tr ar
— — = k
2 2 m Vo(k) =o' (k) + v (k) (34b)

The replacements eq.(34) are the ones required for the construction of a two-body
electromagnetic current operator that satisfies the continuity equation with the
interaction model [44]. We here apply this replacement to the pair current EM
and strangeness charge operators as the generalized propagators constructed in
this way are then consistent with the short-range behavior of the corresponding
interaction components. This short-range behavior is determined phenomenolog-
ically by fitting NN elastic scattering data. An additional Justification for using
the construction eq.(34) is that it has been shown to lead to predictions for the
charge and magnetic form factors of the trinucleons [32,42,44], and threshold
electrodisintegration of the deuteron {45] that are in reasonably good agreement
with the empirical data. The w meson propagator in the corresponding pair cur-
rent, Egs. (22b,c), and the p- and x-meson propagators in the transition current,
Eq.(23), are modified by the inclusion of monopole meson-nucleon form factors

2 2
AM_mM

HAAL (3%)

-F1NNM(k2) =
where M is the exchanged meson of mass m,, and A,, is a cut-off parameter. We
use the values Ayp, = Annpy = Annx =2 GeV, as obtained in boson exchange
interaction models [46]. 1t should be emphasized that the contributions due to the
vector meson pair currents are not significant in the momentum transfer range of
interest here. Furthermore, we note that in evaluating the contributions due to
the vector meson pair currents that include the retardation correction, the non-
local terms in eq.(22c), namely those proportional to P+p’, have been neglected.
This is justified for the p-meson pair current, since the non-local contribution
is suppressed by a factor (1 + Ko)? (K, = 6.6) with respect to the leading term

proportional to Fl(')(-r). This approximation, however, is questionable for the
w-meson pair current, since in this case the tensor coupling is small, x, = —(.12.

IV. Results and Discussion. The results of our VMC calculation are displayed
n Figs. 2-6 In computing various contributions to FE5° and FL)| we have em-

ployed a value of A(,._-” = A, = 5.6 to serve as a pont of comparison, although A
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is essentially a free parameter characterizing the next-to-leading Q*-dependence
of GY and is Lo be constrained by experiment.

Assuming the values p, = —2.12 and x, = —0.2 for the strangeness radius
and magnetic moment of the nucleon, we find that the relativistic Darwin-Foldy
and spin-orbit corrections to the single nucleon operator, and the two-body con-
tributions associated with pseudoscalar and vector meson exchanges as well as
the p7 transition current lead to about 0.5% decrease {(increase in magnitude) of
ps[*He], a negligible effect.

Results for FZ=° = 2/7FZ5° and Fé’) = Qﬁf’é.’o' over a range of momentum-
transfer are shown in Figs. 2 and 3. Panels 2(a) and d(a) give the full form
factor resulting from the one- and two-body currents as well as in the impulse
approximation (1A} for comparison. Panels 2(b) and d(b) display individual con-
tributions from the various one- and two body terms. As indicated by the plot in
Fig. 2(a) and as noted in previous work [32], the inclusion of MEC’s signifieantly
improves the degree of agreement with the data on FE=® over a wide range of ¢
as compared with the 1A form factor. The difference in behavior between F&=
and Fé-") at low-¢ is dictated by the different values of the corresponding nuclear
charges: FE="(0) = AGT=(0) = 2 and F3(0) = AGL)(0) = 0. At larger values
of g, the nuclear EM and strangeness form factors manifest similar structures,
having their first diffraction mimina and subsequent maxima at essentially the
same values of momentum transfer. Since the various contributions to FZ=%(q)
are discussed elsewhere [32], we focus on Fg)(q). At low momentum transfer, the
nuclear strangeness form factor is dominated by the single nucleon contribution
proportional to G(E']. In this regime, the largest corrections arise from the spin-
orbit and p — x transition currents. At moderate values of momentum transfer
(¢22 fm), the largest corrections are due to the pionic pair and p — 7 transi-
tion currents. In arriving at the results shown in this figure, we have assumed
essentially the Jaffe value for the nucleon’s strangeness radius (p, ~ —2) and a
value of g, = —0.2. Under this assumption of what would be a large magnitude
for p,, the one-body, pionic, and p — 7 transition contributions are of the same
order of magnitude at the kinematics of the approved CEBAF experiment [24]
{g = 3.93 fm~'). At this point, the p-7 contribution makes up about 20% of the
total F((;’). Were we to employ, instead, the results of the kaon-loop estimates
of the strangeness parameters, p, ~ 0.4 and p, ~ —0.3 {20], the magnitude of
1"((;’} would be an order of magnitude smaller and would be dominated by the p-n
contribution.

We emphasize that the relative importance of the pionic operator is highly
dependent on one’s model for the one-body strangeness form factor, Fl('), which
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enters the two-hody operator multiplicatively. In this case, the scale of the two-
body operator is set by the Dirac one-bady strangeness radius,

)
Dirac — dFl

_ _Sachs
s e =0 4, (36}

T=0

lu arriving at the results displayed in Fig. 3, we used essentially the pole model
value [16] for p2'* = —2.4, but not the Q2-dependence for F{*) since the latter is
un-realistically gentle in light of simple quark counting arguments. Had we uged,
instead, the results of the kaon loop estimate of Ref. [20], the magnitude of the
pionic contribution would have been a factor of 20 smaller than the contribution
shown in Fig. 3, and the sign would have been opposite. Similarly, the one-body
IA contribution would be reduced by at least a factor of four in magnitude and
its sign would also have been opposite than what appears in Fig. 3. In this
case, the p — 7 transition current would generate the dominant contribution to
F&Y at the kinematics of the approved CEBAF experiment [24], while the single
micleon strangeness radius would still govern the low-¢ behavior of the nuclear
strangeness form factor.

By way of comparison, we note that the vector meson pair current contribution
to F((:) is negligible at moderate values of ¢. Although the precise numerical

values of their contributions depend on one’s model for Gg) and Gg), as well as
on one’s choice as to the treatment of the retardation term, the overall magnitude
of the vector meson pair current contribution is sufficiently small so as to render
the impact of these model-dependencies negligible,

In Figures 4 and 5, we plot the ratio R, = F3(¢)/FE5°(g) = FSN9)/FZ="(q),
which characterizes the s-quark corrections to the non-strange PV asymmetry
(Fqs. (3) and (6)). Assuming |6)/G7) ~ | and |G /GT=0) a 1, which essen-
tially corresponds to assuming the Jaffe values for ps and g, but a more realistic
momentum-dependence in the strange form faclors, we expect a 35% correction
to the non-strange asymmetry (the first term on the right side of Eq. (6)) at the
kinematics of the CEBAF PV “He experiment. Fig. 4 shows the dependence of
this correction on the value of His which, under our form factor parameterization
(Eqs (12-13)), sets the scale of contributions generated by G4, For purposes of
illustration, we have assumed magnitudes and relative signs Gg)/G"é =~ -1 and

G(,.:)/G;:U ~ —1 and have taken a positive sign for Fons- The results at low-¢

imply a negligible dependence of I"C(,’U) on g, in this regime. For momentum trans-
fers in the vicinity of those suggested for the approved CEBAF *He experiment,
the ratio changes by < 15% as p, is varied over a range of values suggested by
model calculations [16-21]. Had we assumed the kaon loop values for ps and p,,
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the overall size of the ratio i, would have been nearly ten times smaller, so that
in this case the relative impact of any uncertainty in j1, would be correspondingly
enhanced.

Fig. 5 displays the impact on R, made by the choice of sign of g,,,, which
one cannot determine from ¢-decay data and symmetry arguments. We illustrate
this sensitivity for two different models of nucleon strangeness: (A) (p,,p,) =
(—2.0,--0.2) and (B) (p,, nu.) = (0.0,-0.2). For low momentum-transfer, the
impact of this uncertainty in sign is negligible, whereas at ¢ =~ 4 fm~! (the
kinemalics of Ref. {24]), it corresponds to roughly a +15% uncertainty in the
asymmetry. To put the point somewhat differently, even if the strange quark
vector current matrix elements of the nucleon vanished identically, we would
expect non-nucleonic strange quarks in the nuclear medium to generate a 15%
correction to the non-strange PV asymmetry at the kinematics of Ref. [24]. The
scale of this effect is well below the 40% statistical error projected for the approved
CEBAF experiment, assuming 50% beam polarization (the error is reduced to
28% for 70% beam polarization). Thus, for a measurement of A Lr(*He) to be
sensitive to y,(,:)(Qz), significantly a longer running time and/or higher beam
polarization would be required.

In Fig. 6, we present the significance of a moderate-g A, ,(*He) measurement
from a somewhat different perspective. If one wishes to constrain the various
strangeness parameters g,, j1,, and z\(;) at a level necessary to test model predic-
tions in detail, then a combination of experiments using proton and A > 1 targets
would be required {1,2,22]. As noted in Refs. [1,2,22], a combination of low- and
moderate-g PV experiments with *He could potentially constrain (p, ,.\s;)) more
tightly than could a sequence of A, (ép) measurements alone. This conclusion
was based on a one-body (IA) calculation and the ideal assumption of 100% beam
polarization with experimental errors being statistics dominated. The inclusion
of two-body currents does not alter our previous couclusion about the possible
constraints attainable from a low-¢ measurement, since the two-body contribu-
tion is negligible in this regime. In Fig. 6, we display the impact of two-body
currents on constrainls attainable at moderate-q. Fig. 6a shows the Joint con-
straints or (p,, p1,) a 10% measurement of A, (*He) counld produce, assumning the
parameterization of Eqgs. (12-13) and central values for these parameters given
by model (A) discussed above. A similar plot for (p,,)ti-"}) constraints is given in
Fig. 6b, where a central value for (p,, ;\(-,;)) = (=2, A,) is assumed. The solid and
dashed lines give the constraints corresponding to different choices as to the sign
of goxs- We take the difference between these two sets of lines as one measure of
the theoretical uncertainly associated with our calculation.
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From Fig. 6a, we note that the correlation between P, and u, 1s weak. This
feature follows from the relatively small magnitudes of the vector meson pailr cur-
rent and spin-orbit contributions, which carry the strongest dependences on p,.
In the case of Fig. 6b, we observe that the moderate-¢ constraints are modified
only slightly from the 1A expectation, even though many-body currents gener-
ate significant contributions to Fé’o) and FZ5°. The reason for the insensitivity
of these constraints to the two-body currents can be explained in the following
manner. First, the pionic corrections are proportional Lo the Dirac form factor

FY=1+07" 6@+ ra®] (37)

where “a” denotes either the isoscalar EM current or strange quark current. At
the kinematics of the moderate-¢ CEBAF PV experiment, one has 7 = 0.17 so
that 7GL°/GE=0 = 0.15. In this case, F7=* ~ GZ=0. Similarly, 1G/G) ~
Ha/ps 22 0.15, assuming the Jaffe values for the strangeness parameters, so that
F'l(') ] GL!’. Under these assumptions, the pionic pair currents give the dominant,
correction to the IA nuclear form factors, so that at + = (.17 (9% = 0.6 (GeV/c)?)
one has

FE&5°(9) ~ (g 1M3=* (@) + MT=(q)f2] ..l g.5.) (38a)

= G (1) g 5. |0 + O(g)P) g.s)

FEQ@) ~ (s IV (@M + M§2 (@) gs) (38b)

pionic
=~ G (7)(gs. 110 + O(g)| g5y

where O(g)(! and O(¢)® are nuclear operators (see, e.g., Eqs. (15) and (A.1)).
Hence, the raiio R, = Fé’o’/Fgg" is essentially independent of nuclear matrix
elements and is governed by the ratio of single nucleon form factors as in the
1A case. Thus, the inclusion of two-body currents does not seriously change the
Joint constraints on p, and AE;). Some changes from the [A results do appear,
since neither Gg:) nor the p-x constributions are completely negligible. In the
event that {u,/p,] >> 0.15, however, this argument would break down and our
conclusions would have to be modified.

We also point out that the uncertainty in the sign of the g~ transition current
contribution does not seriously affect the (p,, AY)) constraints, even though the
nagnitude of this contribution is as large as the experimental uncertainty in A, ,
assumed in obtaining the plots of Fig. 6. To understand why this is the case,
consider the fullowing argument. If one assumes that atl of 6 A, translates into
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an uncertainty 8K, in the extracted value of R,, and if one further assumes that
ps and /\(;) can be varied in a manner consistent with this uncertainty 6 R, (as
we've done in obtaining the lines in Fig. 6h), then one has

6 AL R bR,

= e 38
A g 4sin 8., + R, (38)
or
., A, _
bRy = (4sin 0w + R,) =2 01401 B, {40)
LR

for $A.5/ALr = 0.1. Since R, changes by only 0.1 for different choices for the
sign of g,x,, the impact of this choice on the magnitude of §R, — and, therefore

on the joint constraints on (p,, AE_:')) ~ is an order of magnitude smaller than the
impact of the experimental error in A4, .

Finally, in Fig. 7 we show Lhe p-meson pair current contribution to Fé.’) under
the two different assumptions as to the inclusion of the retardation correction.
The curve labelled by “py” was calculated without the retardation correction
(Gari-Hyuga convention [36]), while the curve labelled by “p” includes it (Riska
convention [32,33]). The difference between the two should be taken as an estj-
mate of the theoretical uncertainty in the treatment of these short-range currents.
Fortunately, the scale of the vector meson contributions is sufficiently small that

the choice of convention has a negligible impact on the value of Fg’.

V. Conclusions. We have computed MEC contributions to the *He strange
quark elastic form factor, Fg) = QﬁFé’D)(q), using Monte Carlo methods and
an accurate variational ground state wavefunction. Qur results indicate that
the nuclear strangeness radius, p,[nuc], which governs Fg)(q) at low momentum-
transfer, is (1) dominated by the single nucleon strangeness radius, (2) two orders
of magnitude less sensitive to many-body strangeness currents, and (3) indepen-
dent of pionic MEC’s - results which essentially confirm our previous conclu-
stons based on the shell model calculation. At moderate values of ¢, such as

those corresponding to the approved CEBAF elastic PV ‘He experiment [24],

we find that Fé') generates a 35% correction to the PV asymmetry, assuming

that I(I(b‘.')/(}'; & 1 and IGf.:)/G',‘;:U[ =2 1 in this regime and that ¢$¥(Q?) is cor-
rectly given by ¢-meson dominance. The magnitude of this correction is simaller
than the statistical error projected for the CLBAF experiment under the most
conservative assumptions about beam polarization. In the absence of nucleonic

sirangeness, non-nucleonic 5§ pairs would generate roughly a 15% correction Lo
H



the non-strange asymmetry at these kinematics. Thus, the scale of the strange-
quark contribution to A n(*He) is still sensitive to the nucleon’s strangeness
clectric form factor. In the event that |(,;g)/(¥";| << 1, a more precise *He PV
measurement could probe the p-7 strangeness charge operator. Such a measwre-
ment would be interesting since only a p-7 transition three-current operator has
been probed in other experiments performed to date [27]. Finally, inclusion of
MEC contributions to Fé.’) and F1=° does not appear to affect, noticeably the
constraints on the leading and next-to-leading ()*-dependence of G(E’) attainable
with a medium-q measurement of the *He PV asymmelry.
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APPENDIX

In this Appendix, we provide complete expressions for the two-body charge op-
erators, expressions for the low-q forms of the corresponding Coulomb projections,
and additional details of our shell model calculation of the nuclear strangeness
radius.

Two-body charge operators

Expressions for the co-ordinate space charge operators can be obtained by
Fourier-transforming the momentum-space operators in Eq. (22) and (24) and
summing over all nucleon pairs. The resulting formulae are

2
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for the pionic current,
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for the vector meson pair current in the ahsence of the retardation term and
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with the retardation term included. The p-r transition current operator is given
by

(a) .
AN = - ["'”"9””””"' (”] > 6(E - Z)8(E; — E])7 - 5 R, 5) (A.3)

J2xmim, L
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Fo(f)=hy + % We define

3{(F) = —970 V.=V,- ", , (A.B)
G\(F) = 1 ( _ @) 2 (A.5b) where %7,- and V,— are gradients acting to the left and right, respectively, on the
==\ 2/19 ’ co-ordinate of the i-th nucleon in the wavefunction {and not on the co-ordinates
Ga(7) = 29 e — hg appearing in the operators). The isospin tensor 7%, (i, J) 1s defined in Eq. (23), the
e ) quantities ¥; and £/ are the co-ordinate of the i-th nucleon in the initial and final
G ra go A hg state wavefunction, respectively, and where the co-ordinates rij etc. are defined
a(r) = ¢ r (91 - ?) tim- 9 in Eq. (A.11) below. As clsewhere, the superscript “a” denotes either the T'= 0
kg . EM current or strangeness current operators. :
Ga(F) = ko — T Expressions for the pair current operators with hadronic form factors included
h (finite A, ) may be obtained from the above formulae by making the replacement
Gs(F) = = +q° (92 - 542)
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I _ go where ((rn,,) is any one of the pair current operators in Eqs. (A.1,2) associated
oF) = a9 with the exchange of a meson having mass m,,. Similarly, for the p-7 transition
3ho  3g0 current, the Coulomb operator in the presence of hadronic form factors arises
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I 1 g0 A hy where O(m,, m,) is the operator appearing in Eq. {A.3).
5(F) = r (g; + '2_) tlmt 9 Substituting the above expressions for the charge operators into Eq. (7¢) and
expanding the exponentials in powers of ¢ leads to the following expressions for
and where the leading ¢-dependence of the Coulomb operators:
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We note in passing that the overall normalization of the p—x operator appearing
in Eq. (A .10¢) differs by a factor of four from that appearing in Eq. (7) of Ref. [26).

The latter, as well as the terms involving g ) in Eqs. (10) and (14) of that work,
should be multiplied by 1/4.
Shell Medel Calculation
Use of a simple shell model *lle ground state allows one to obtain analytic

expressions for Lthe nuclear strangeneness radius, p,[nuc], which are useful in the
interpretation of the numerical results obtained with variational ground state
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wavefunctions. To that end, we compute malrix elements of the one- and two-
body Coulomb operators in the low-¢ limit. From the expressions in Eqs. (A.10)
and as noted in the main text of the paper, the vector meson pair current and
g transition current Coulomb operators go as ¢ for low-q. The two-body
pionic operator, in contrast, vanishes as q* since Fl(") ~ ¢% and since the operator
carries an additional, explicit factor of ¢*. Similarly, the vector meson pair ctrrent
retardation term also enters at O(q*). Thus, for purposes of computing two-body
contributions to p,[nuc], we need only compute matrix elements of the operators
in Eqs. (A.10b,c). In the limit that the *He ground state is a pure S-state, the
leading g2-dependence of the one-body matrix element (Eq. (15)) is given by the
one-body form factor times the number of nucleons and is independent of details
of the nuclear wavelunction. The two-body matrix elements, on the other hand,
are structure-dependent. An important consideration in this respect is the short-
range repulsion between nucleons. Since the ranges of the p- and w-mesons are
commensurate with the radius of the repulsive core in the N-N potential, matrix
elements of the vector meson exchange operators ought to be suppressed. To
account for this effect, we compute the two-body shell model matrix elements
by inc¢luding a phenomenological correlation function, g(r), in the integral over
relative co-ordinates:

/ ridr u* (r)Ou(r) — ] ridr g(r) u*(r)Ou(r) , (A.13)
0 0

where u{r) is the radial wavefunction for the relative motion of two nucleons,
r = |Z) — &3] is the relative co-ordinate, and @ is an r-dependent two-body
operator. Following the approach of Ref. [34], we take the correlation function
to have the form

g(r)=C [1 - e—"/f"] : (A.14)

where the constant (7 is determined by the requirement that the wavefunction
be normalized. A fit to the nuclear matter correlation function of Ref. [47) gives
d = 0.84 fm. With this form for g(r), the un-correlated two-body matrix elements
are modified as

M(b) — C [M(b) ~ M(b.)] | (A 15)

where M(b) is the un-correlated two-body matrix element computed using an
oscillator parameter b, where the effective oscillator parameter is given by

(D@

28

and where

~ beﬂ' 3 -
= [1 - (T) ] . (A.17)

In the limit of no short-range repuision (ber — 0), one has for the leading
g-dependence of I'é"u) the expression given in Eq. (26). The nuclear A1 2 are given
by

A= 2T (A.18a)
2 2 m, v
Ape = _VZ (1+4x,) (i;g_;;g) (f_n":) (;‘ib) (A.18b)
=pw

{1 by 4 By exp [y 7 e (=)}

\/59\2/»1:4 my Ny 5
*“VE“*"”(—S;T)(m)m["m*'] |

=p,w

_ \/EytNNQpNN Ny 1
A2b - (1 +K2P) ( 1872 ) (Tﬂpb) [(mpb)z _ ("_‘tb)zjl (A]BC)
x [(m,b)zl(m,b) - (m,,b)"’l(m,,b)] ,
where
I(mb)y =1 - @(mb} exp[}(mb)?]erfc (%) , (A.19)

and where N, ; are spin-isospin matrix elements and gyny is the vector meson-
nucleon coupling. For b = 1.2 fm, one has m,b >> 1, so that the function in
Eq. (A.18¢) may be expanded as
B)2H(myb) = 1 — —5_ :
(mpb)*I(m,b) = 1 - it (A.20)

A similar expansion in powers of 1/(rn,b) has been used in arriving at the expres-
sion in Eq. (A.18b), where the - indicates contributions from terims higher
order in 1/(m,b).
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Fig.

Figure Captions

L. Two-nucleon (N and N’) meson exchange current, (MEC) contributions
to nuclear matrix elements of the isoscalar EM and strange-quark vector
currents. “Pair current” processes, shown in (a,b), arise from the negative
energy pole in the intermediate-state, single nucleon propagator. “Iran-
sition current” contributions (c) are generated by matrix element of the
current operators (indicated by the ®) between mesonic states (M' and
M). As explained in the text, mesonic matrix elements of JIM(T = 0) and
57,5 vanish when M’/ = M. :

2. 'He elastic charge form factor, FZ=°(¢). Panel (a) gives the absolute
value of the form factor. Circles indicate experimental values. Dashed
curve gives theoretical prediction in the nnpulse approximation (1A) while
the solid curve results from the inclusion of two-body currents (LA +MEC).
Panel (b} shows individual one- and two-body contributions to FZ=°(q).
One-body contribution is indicatd by solid curve (IA). Dashed curves give
contributions from the pionic (circles), pmeson (squares), and w-meson
(asterisks) pair currents as well as the p-r “transition current (triangles).
Short dashed curve indicates the spin-orbit contribution. Ounly the absolute
value of each contribution is plotted, and the signs are indicated in paren-
thesis. Vector meson pair current contributions are computed including the
retardation correction to the charge operator (Egs. 22c and A.2b).

3. Same as Fig. 2, but for the elastic strangeness charge form factor of
He, Fé')(q). In this case, only theoretical predictions are shown, since
no measurements have as yet been made. Computations were carried out
using (p,, fy) = (-2.0, —0.2), which correspond roughly to the pole model
predictions for these parameters [16], and a Galster-like parameterization
for the g-dependence of the one-body strangeness form factors. A positive
sign for ¢,x, was also assumned.

4. LElastic strangeness to EM charge form factor ratio, F((;')(q)/l-‘c"."=“(q) for
different values of nucleon strangeness magnetic moment, g, and fixed
strangeness radius, p,.



Fig.

Fig.

Fig.

5. Same as Fig. 4, but for fixed ji, and variable #:. In each case, results
using the impulse approximation for F((;” are shown along with results in-
cluding two-body currents for two different choices of sign on g¢,x,. Panel
(a) assumnes a large negative value for p,, while panel (b) gives the ratio for
vanishing nucleon strangeness radins.

6. Prospective constraints on single nucleon strangeness parameters from
a 10% measurement of the ?Ife elastic, PV asymmetry at Q% = 0.6
(GeV/c)?. Sohd {dashed) lines give the band of allowed values for posi-
tive (negative) sign on g,,,. In panel (a), AY? is assumed fixed, while in
panel (b}, y, is held constant. In both panels, central values of (p, , ., ,\S;))
= (—=2.0,-0.2,5.6) are assumed for purposes of illustration.

7. p-meson pair current contribution to F((:")(q) computed including the
retardation correction and omitting it (“#” subscript). Only absolute value
is plotted, while sign is indicated in parenthesis.
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